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One-dimensional contact process: Duality and renormalization

Jef Hooyberghs* and Carlo Vanderzande
Departement WNI, Limburgs Universitair Centrum, 3590 Diepenbeek, Belgium

~Received 3 October 2000; published 22 March 2001!

We study the one-dimensional contact process in its quantum version using a recently proposed real-space
renormalization technique for stochastic many-particle systems. Exploiting the duality and other properties of
the model, we can apply the method for cells with up to 37 sites. After suitable extrapolation, we obtain
exponent estimates that are comparable in accuracy with the best known in the literature.
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I. INTRODUCTION

Phase transitions out of an absorbing state form an im
tant class of nonequilibrium critical phenomena@1#. Models
having such a transition have appeared in various areas
as surface chemistry@2#, population dynamics@3#, etc. Very
recently, it was even shown that the so-called ‘‘se
organized criticality’’ appearing in a number of sandp
models can be related to ‘‘ordinary’’ criticality in a class
models with an infinite number of absorbing states an
conservation law@4,5#.

A hot topic in current nonequilibrium statistical mecha
ics is to understand what the possible universality classes
that can exist for such models, and more importantly, w
precisely determines these universality classes. Researc
these questions has mainly focused on the one-dimens
case. By now, it is clear that two main nontrivial universal
classes exist. The first one is that of directed percola
~DP!, which contains models such as the contact process
Ziff-Gulari-Barshad@2# model of catalysis, branching an
annihilating walks with an odd offspring@6#, etc. This class
is very robust, in agreement withthe DP conjecture@7#,
which states that all phase transitions out of an absorb
state in models with a scalar order parameter, short ra
interactions, and no conservation laws belong to the DP
versality class. Over the past decade, the existence of a
ond universality class has been clearly established. T
class, known as the parity-conserving~PC! class, contains
among others, such models as the branching and annihila
walks with an even offspring, the monomer-dimer model@8#,
and a certain type of generalized contact process@9#. The
precise conditions that determine this class are, however,
unclear. Some authors argue that it is a conservation law@10#
~the conservation of particle number modulo 2! that is the
important factor, whereas others have claimed that it is
existence of two equivalent absorbing states@9#.

Another issue that is currently being debated is the imp
tance of exclusion in these models. Indeed, it has been
cently argued that adding exclusion to a model of branch
and annihilating walks withN>2 species of particles
changes some of the critical exponents@11#.

In light of these questions, the development of prec
approximate techniques is crucial. Most of the current und
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standing of these models has come from two approac
extensive numerical simulations and field theore
renormalization-group~RG! techniques@12,13#. Both meth-
ods have their strong and weak points. Simulations allow
study of quite big system sizes~especially ind51). Near the
critical point, however, relaxation times may be quite lar
and one can never be very sure that the asymptotic t
regime has been reached. Field theoretic techniques are
powerful but have their own difficulties. In the case of th
branching and annihilating random walks with an even o
spring, there exist two upper critical dimensions that ma
reliable exponent estimates ind51 very difficult @10#. Be-
sides these two main techniques, also a series expan
method has been developed for nonequilibrium syste
@14,15#. This method gives very accurate exponent estima
for such models as the contact process, but has not b
applied very extensively yet.

For these reasons, in recent years attention has been g
to alternative approaches that can be called real-space re
malization methods. These techniques use the by now
known formal equivalence between a stochastic system a
quantum-mechanical model evolving in imaginary time@16#.
In this way, one can associate with the generator of a Mar
chain a quantum Hamiltonian, which can then be stud
using various techniques that were originally introduced
the study of quantum spin chains, fermion models, etc.
some models, this approach can lead to an exact solution
an example, we mention the relation between the asymme
exclusion process and theXXZ chain. Unfortunately, no
models with a nontrivial bulk phase transition can be solv
in this way. Yet, in the same spirit one can then use appro
mate techniques originally developed for quantum system
study stochastic systems. The most famous of these
proaches is certainly the density-matrix renormalizat
group ~DMRG! @17,18#. This technique has by now bee
adapted to stochastic systems@19–21#. The method is
asymptotic in time, but at this moment can treat only syste
consisting of approximately 50–100 sites. The name DMR
is a bit of a misnomer since no renormalization-group flo
are calculated. This may make it hard in some cases to
clear results on issues of universality.

Another approach working within the same spirit was
cently introduced by the present authors@22#. In our real-
space renormalization-group technique, we apply the
called standard renormalization method~SRG!, also known
as the SLAC approach@23#, to the quantum Hamiltoniann.
©2001 The American Physical Society09-1
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JEF HOOYBERGHS AND CARLO VANDERZANDE PHYSICAL REVIEW E63 041109
associated with the stochastic model. The SLAC appro
was introduced in the late 1970s in the study of lattice ga
theories and was subsequently applied to a great numb
quantum spin and fermion systems@24#. In a previous paper
we adapted this technique to the study of stochastic syst
@22# and applied it to some exactly solvable cases. Surp
ingly, in many cases exact results were recovered. We
applied our technique to the contact process, using a s
cell of only three sites. The numerical estimates of criti
properties that we obtained for this process were within 1
of the best known values. In the present paper, we extend
calculations for the contact process to as large cells as
sible. Using underlying properties of the contact process,
are able to get results for cells with up to 37 sites. To the b
of our knowledge, this is a ‘‘world record’’ for the SRG
approach to quantum systems. Combined with good extra
lation techniques, these results allow us to determine v
accurate exponents for the contact process. In fact, the re
we obtain are of the same accuracy as those obtained
series expansions and simulations, and are more acc
than those coming from the DMRG.

This paper is organized as follows. In the next section,
introduce the contact process and its quantum descrip
We also translate the duality of the model into a quantu
mechanical language. In Sec. III, we give a brief outline
our real-space renormalization method. In Sec. IV, we sh
how for the case of the contact process, the RG flow can
calculated from a knowledge of only two matrix elements.
Sec. V, we present the results of our calculations for differ
system sizes, describe the extrapolation procedures,
compare our results with those in the literature. Finally,
conclude with a discussion in Sec. VI.

II. QUANTUM DESCRIPTION OF THE
CONTACT PROCESS

The contact process was originally introduced as a sim
model for the spreading of an epidemic@3#. On each site
i ( i :1, . . . ,N) of a latticeL, there is a variableh i that can
take on two values, referred to asA and B. In the contact
process, particlesA ~vacanciesB) are interpreted as sic
~healthy! individuals. The dynamics of the model is given b
a continuous-time Markov chain on the set of all microsco
configurationsh[$h1 , . . . ,hN%. The following processes
are allowed: a sick person can be cured (A→B) with rate 1
and a healthy individual can become contaminated wit
ratezl/2, wherez is the number of sick neighbors. The co
ditional probability P(h,t;h0,0) that the system is in con
figuration h at time t given that it was inh0 at time t50
then obeys the master equation

dP~h,t;h0,0!

dt
52(

h8
H~h,h8!P~h8,t;h0,0!, ~1!

where the 2N32N matrix H, the generator of the Markov
chain, depends on the transition rates, i.e., onl.

The master equation~1! is formally equivalent to a Schro¨-
dinger equation in imaginary time. It has therefore beco
common to introduce a quantum-mechanical notation fo
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stochastic process. This mapping of a stochastic system
a quantum-mechanical one is by now quite standard and
will not discuss it here in any detail. We only give a bri
review that also fixes the notation that will be used furth
To each configurationh, a state vectoruh&5 ^ i 51

N uh i& is
associated. The vectorsuh i& form the basis vectors of a two
dimensional vector space. It is then natural to use a sp1

2

language to describe this vector space. As usual, a par
~vacancy! will be associated with spin down~up! @26#.

Next, we also associate a vectoruP(t)& with the condi-
tional probabilitiesP(h,t;h0,0) such that

uP~ t !&5(
h

P~h,t;h0,0!uh&. ~2!

Using this notation, the master equation~1! is rewritten as

duP~ t !&
dt

52HuP~ t !&. ~3!

From now on, we will refer to the matrixH as the Hamil-
tonian of the stochastic system. For processes with trans
rates that involve only nearest-neighbor sites~such as is the
case for the contact process!, H can be written as a sum o
local Hamiltonianshi ,i 11 that act only on nearest-neighbo
sites,

H5(
i

11^ •••^ 1i 21^ hi ,i 11^ 1i 12^ •••1N . ~4!

In the particular case of the contact process, we have~see
also @25#!

hi ,i 115~ni2si
1! ^ 1i 11

1
l

2
@~v i2si

2! ^ ni 111ni ^ ~v i 112si 11
2 !#, ~5!

where the matricesv, n, s1, ands2 are given by

v5S 1 0

0 0D , n5S 0 0

0 1D , s15S 0 1

0 0D ,

s25S 0 0

1 0D . ~6!

The formal solution of the master equation~3! is

uP~ t !&5e2HtuP~0!&.

Because of the properties of stochastic matrices, there is
ways a zero eigenvalue and the real parts of the other ei
values ofH are never negative. Therefore, asymptotical
for t→` the behavior ofuP(t)& is determined by the prop
erties of the ground state~s! of the quantum Hamiltonian. In
our RG approach, we study the critical behavior of the s
tionary state of the stochastic system by applying a re
space renormalization technique originally developed
study ground-state properties of quantum systems.
9-2



si
c
e-
-

o
wi
cs
o

ive
o

e
ns

ha

tio

ty

-

hat

s in-

e.
ct
ty
.

RG

di-

the

f

n-

tes

e

to

by

ONE-DIMENSIONAL CONTACT PROCESS: DUALITY . . . PHYSICAL REVIEW E63 041109
Expectation values of physical quantities can also ea
be rewritten in terms of the quantum notation. With ea
physical quantityF ~such as the density of particles, corr
lation functions, etc.!, we can associate a quantum
mechanical operatorF @with matrix elements^huFuh8&
5F(h)dhh8# such that the expectation value ofF,

^F&~ t !5(
h

F~h!P~h,t;h0,0!,

can be rewritten as

^F&~ t !5^suFuP~ t !&5^suFe2HtuP~0!&,

where we have introduced the shorthand notation

^su5(
h

^hu. ~7!

The contact process has a property known as duality@27#.
This notion was first introduced in the probabilistic study
interacting particle systems and should not be confused
the concept of duality from equilibrium statistical mechani
Before proceeding with the renormalization-group study
the contact process, we show how this duality can be der
in the quantum-mechanical language. This formulation
duality was first given in@28#. We will describe it here in a
slightly different way, which will be appropriate for the us
we want to make of it in our renormalization calculatio
~see Sec. IV!.

We begin by introducing the 232 matrix d,

d5S 1 1

1 0D ,

and dk511^ 12•••^ d^ •••^ 1N , ;k ~with d on the kth
site!. It is then easy to check the fundamental property

hk
T5~dk^ dk11!hk~dk^ dk11!21,

where T stands for transposed. Furthermore, one
dknkdk

215vk2sk
1 . From these relations and definingD5

^ kdk , one can obtain a useful expression for the expecta
value ofnk that gives the density of particles at sitek,

^nk&~ t !5^sunke
2HtuP~0!&

5^suD21DnkD
21De2HtD21DuP~0!&. ~8!

If u0& and uL& denote, respectively, the completely emp
and completely full configuration, one has

~D21!Tus&5u0&,

DuL&5u0&.

Therefore, if we take as the initial conditionuP(0)&5uL&,
Eq. ~8! becomes
04110
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^nk&~ t !5^0u~vk2sk
1!e2HTtu0&

5^0ue2Ht~vk2sk
2!u0&

512^0ue2Htuk&. ~9!

Here uk& is the state with only one particle, at sitek. The
matrix element^0ue2Htuk& appearing in Eq.~9! gives the
probability that starting att50 with one particle at sitek, no
particles are left in the system at timet. If we introduce the
survival probability Pk(t) as the probability that if the sys
tem is initially in the stateuk& there are still particles in the
system at timet, we finally get

^nk&~ t !5Pk~ t !. ~10!

This is the duality relation of the contact process. It says t
the density of particles at sitek when starting from a com-
pletely full lattice is the same asPk(t). For t→`, one ex-
pects that the steady-state value of the density become
dependent of the initial condition and hence we obtain

^nk&st5Pk,st. ~11!

Here, the subscript ‘‘st’’ denotes the stationary-state valu
~In the rest of this paper, we will drop the direct produ

symbol to shorten the notation. We will also drop all uni
operators, as their presence is always implicitly assumed!

III. STANDARD RENORMALIZATION FOR
STOCHASTIC SYSTEMS

We briefly review the use of the standard real-space
for stochastic systems as introduced in a previous paper@22#.
For more details, we refer to that work.

As usual in real-space RG approaches, the lattice is
vided into cells, each containingb sites. In the case of a
one-dimensional system, we can regroup the terms in
HamiltonianH ~4! to write

H5(
a

~H0,a1Va,a11!. ~12!

Herea labels the cells,H0,a contains the intracell terms o
H, andVa,a11 denotes the intercell interactions. Next,H0,a
is diagonalized exactly. For simplicity, we now only co
sider the case where the ground state ofH0,a is doubly de-
generated. We then have two right and two left ground sta
of H0,a denoted asus1&a , us2&a and a^s1u, a^s2u, which we
can normalize asa^si usj&a5d i j . We consider one of thes
states as representing a ‘‘cell vacancy’’ stateuB&a and the
other as a ‘‘cell particle’’uA&a state. These states are used
construct renormalized lattice configurationsuh8&5
^ auh&a , which span a 2N/b-dimensional subspaceW of the
original state space.

The renormalization transformation is now performed
projecting the original Hamiltonian ontoW. This is done by
means of the matrices
9-3



te

ca

b
le
i

o

r-

ar
en
-

o

th
r

th
t

n a

itly

s

a-
A

ian

the
e
nly

y of
he
we

lled
he
ns-
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T15(
h8

ueh8&^h8u, T25(
h8

uh8&^eh8u, ~13!

whereueh8& are the vectors of the standard basis ofW. Be-
cause of our choice of normalization for the ground sta
we getT1T251, the identity operator onW. Finally, T1 and
T2 are used to calculate the renormalized HamiltonianH8 as

H85T1HT2 . ~14!

When the ground state of the intracell partsH0,a is doubly
degenerated~as we assumed!, it is easy to show thatH8 is
again stochastic.

If we collect the rates appearing inH in a vectorwW , Eq.
~14! defines a mapping in the parameter spacewW 85 f (wW ).
From this mapping we can determine fixed points, criti
exponents, expectation values in the ground state, etc.~One
of the rates appearing in the Hamiltonian can always
taken equal to 1. This is merely a fixing of the time sca
The corresponding rate in the renormalized Hamiltonian
not necessarily 1, but we then divideH8 by this renormalized
rate; the effect of this division is included in the mappingf.!

To fix ideas, let us assume that the equationswW 85 f (wW )
have a nontrivial fixed point atwW !, with one relevant scaling
field ~which in a linear approximation is proportional t
Dw15w12w1

!) whose scaling dimension isyw1
. From stan-

dard RG theory, it then follows that near criticality the co
relation lengthj will diverge asj;uDw1un' with

n'51/yw1
. ~15!

In order to determine the order-parameter exponentb, we
need first to explain how the particle density in the station
statecst(wW ) can be calculated within our RG scheme. Wh
the system is in the ground stateusi&, and assuming transla
tional invariance, this density is given by

cst~wW !5^sunkusi~wW !&, ~16!

where we have now explicitly indicated the dependence
the ground state on the transition rateswW . Under the renor-
malization, this expectation value transforms as@22#

cst~wW !5a~wW !cst~wW 8!. ~17!

Here we assumed, as will turn out to be the case for
contact process, that the renormalized particle operatonk8

5T1nkT2 is proportional tonk , i.e., nk85a(wW )nk . The rela-
tion ~17! can be iterated along the RG flow, and hence
density of particles can be obtained as an infinite produc
one knows the density at the~trivial! fixed point wW t

! that

attractswW ,

cst~wW !5F)
i 50

`

a~wW ( i )!Gcst~wW t
!!. ~18!
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In principle, other expectation values can be calculated i
similar way.

To conclude this section, we show how Eq.~17! can be
used to calculate the exponentb. Near wW !, we get for the
singular part ofcst,

cst~Dw1!5a~wW !!cst~byw1Dw1!. ~19!

We write

a~wW !!5bb/n' ~20!

and get from Eqs.~19! and ~15!

cst~Dw1!;~Dw1!b, ~21!

which justifies Eq.~20!. Hence,b can be obtained from
a(wW !).

IV. RENORMALIZATION OF THE CONTACT PROCESS

This section is a more technical one, and shows explic
how we calculate the RG flow for the contact process.

We start by dividing the lattice in blocks of lengthb. The
terms of the Hamiltonian~4! and ~5! are regrouped. We
therefore introduce the following short-hand notations:

hi
15ni2si

1 , ~22!

hi
25

l

2
@~v i2si

2!ni 111ni~v i 112si 11
2 !#, ~23!

which are, respectively, the generators of the processeA
→B andA1B→A1A,B1A→A1A. Notice that each of
these terms itself has the property of duality.

It is now important to remark that the regrouping in intr
cell and intercell parts of the Hamiltonian is not unique.
natural attempt is to take intoH0,a all the terms that act on
the sites inside the cell, hence take the intracell Hamilton
as that of a contact process for a system ofb sites with open
boundary condition:H0,a5( i 51

b ha,i
1 1( i

b21ha,i
2 ~here the

first subindex labels the cell, while the second indicates
site in the given cell!. This choice, however, is not suitabl
for us since in this case the intracell Hamiltonian has o
one ground state, which is the trivial empty latticeus1&a5
^ i 51

b uB&a,i .
As we argued in the preceding section,H0,a should have

two ground states, one representing the effective vacanc
cell a and one representing the effective particle. It is t
second one that is missing. To solve this problem,
‘‘force’’ H0,a to have an active ground state by removinghi

1

on the central site of the cell. This resembles the so-ca
self-dual renormalization group introduced earlier in t
study of quantum models such as the Ising model in a tra
verse field@29#.

From now on, we chooseb odd,b52n21, and take
9-4
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H0,a5 (
i 51

n21

ha,i
1 1 (

i 5n11

b

ha,i
1 1 (

i 51

b21

ha,i
2 . ~24!

The operatorha,n
1 that we removed fromH0,a is then of

course added toVa,a11 concluding the regrouping of th
terms occurring in the Hamiltonian.

The hardest part of the RG is the calculation of the t
right and left ground states ofH0,a for b as large as possible
Analytically this can only be done forb up to five sites. To
make a reliable extrapolation forb→` possible, we need a
good numerical algorithm to get to largerb. Before we turn
to this point in the next section, there are a few analyti
considerations that can be made and that will turn out to
extremely useful in studying large cell sizes.

We start with the two right ground statesus1&a , us2&a of
H0,a as defined in Eq.~24!. The first one is again trivia
us1&a5 ^ i 51

b uB&a,i . To get an idea of how the active groun
stateus2&a looks, we rewrite Eq.~24! as

H0,a5Ha
l 1Ha

r , ~25!

where

Ha
r 5 (

i 51

n21

ha,i
1 1 (

i 51

n21

ha,i
2 ,

~26!

Ha
l 5 (

i 5n11

b

ha,i
1 1 (

i 5n

b21

ha,i
2 .

PhysicallyHa
r (Ha

l ) is the stochastic generator of the conta
process on a lattice ofn sites without the processA→B on
the right~left! site. These operators have again a trivial rig
ground state~the empty lattice! and a nontrivial~active! right
ground state. To get a better grasp on the latter one, we
notice thatHa

r has no (A→B) term on site (a,n). Since this
is the only reaction destroyingA’s on that site, there are n
transitions possible from configurations with anA on site
(a,n) to configurations with no particle at (a,n). Denote the
subspace spanned by the former configurations byV. Then,
Ha

r defines a stochastic process onV, implying thatHa
r must

have a ground state in this subspace. This ground s
clearly cannot be the empty lattice since this is not an e
ment ofV. We therefore conclude that this state is the act
ground state ofHa

r and that it has with probability 1 a par-
ticle A at siten. The same can be said forHa

l . As a conse-
quence, we can write the active ground state as

uc&a
r

^ uA&a,n for Ha
r ,

~27!
uA&a,n^ uc&a

l for Ha
l ,

whereuc&a
r and uc&a

l are states on a lattice withn21 sites
~to get some idea of the stateuA&a,n^ uc&a

l , we show in Fig.
1 the behavior of the particle density in this state for a s
tem of eight sites!.

It then follows from Eq.~26! that uc&a
r

^ uA&a,n^ uc&a
l is

the active ground state ofH0,a . Hence, if we can find the
right ground state of the ‘‘contact process’’ determined
04110
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Hn
r on a lattice ofn sites, we can construct the ground sta

of the process defined byH0,a on a lattice ofb52n21 sites
~sinceuc&a

l can easily be obtained by reflection onceuc&a
r is

known!. In conclusion, we have

us1&a5 ^ i 51
b uB&a,i ,

~28!
us2&a5uc&a

r
^ uA&a,n^ uc&a

l .

For the left ground states ofH0,a , we always have the
trivial ground statea^su5(h^hu and a nontrivial one. To
find the latter, we exploit the duality ofH0,a . Indeed, from
this duality H0,a

T 5BH0,aB21, it follows that for any right
ground stateusk&a of H0,a , (Busk&a)T is a left ground state.
Denoting a

r ,l^fu5(Buc&a
r ,l)T, we have

a^s1u5a
r ^fu ^ ^Bu ^ a

l ^fu,
~29!

a^s2u5a^su2a^s1u.

We takea^s2u of this form because of normalization reason
Our choice guarantees thata^si usj&a5d i , j , which we need
to conserve stochasticity as explained in the preceding
tion.

To conclude the calculation, we perform the renormaliz
tion transformation~14! on H. Without any further informa-
tion on uc&a

r ,l , we know that the ground states~28! and~29!
of H0,a are properly normalized and have left-right symm
try, and moreover we know the state of the central site.
ing these three properties, it is straightforward to show t
the renormalized HamiltonianH8 contains the same terms a
H, there is therefore no proliferation of interactions, and t
the RG equation for the ratel is of the form

l85l
v2

w2
, ~30!

where

v5^suna,1~ uc&a
r

^ uA&a,n),

FIG. 1. Average density of particleŝni& in the stateuA&a,n

^ uc&a
l for n58, at different values ofl. The curves are~top to

bottom! at l54,3.298(lc) andl52.
9-5
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TABLE I. Critical parameters as calculated by the RG method for a block ofb sites, together with the
results coming from other approaches.

b lc n' b/n'

9 3.228740192229 1.100222670443 0.300770659640
11 3.232841532095 1.099704726572 0.291239313449
13 3.236622341324 1.099306840428 0.284829626291
15 3.240001893307 1.098993499409 0.280220582724
17 3.243002363779 1.098741258486 0.276745857289
19 3.245669884031 1.098534370274 0.274032449042
21 3.248051604747 1.098361971472 0.271855062319
23 3.250189366461 1.098216363626 0.270069478446
25 3.252118590397 1.098091954504 0.268579043181
27 3.253868772889 1.097984591005 0.267316523888
29 3.255464377754 1.097891127814 0.266233690895
31 3.256925727824 1.097809141091 0.265295037853
33 3.258269778268 1.097736734033 0.264473840447
35 3.259510752614 1.097672401665 0.263749596182
37 3.260660654464 1.097614935125 0.263106311367

b→` 3.2982~2! 1.09682~2! 0.2534~4!

series expansion@15,14# 3.29785~2! 1.0969~1! 0.2520~1!

diagonalization@34# 3.29792~2! 1.09681~1! 0.256~1!

simulations@33# 1.09684~1! 0.25208~1!

series expansions@39# 1.096854~4! 0.252072~11!

DMRG @20# 1.08~2! 0.249~3!
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r ^cuBTuc&a

r .

~31!

This means we can generate the RG map for the con
process with cell lengthb52n21 by calculating two matrix
elements in the right ground state of the contact processHa

r

on a lattice of onlyn sites. In this way, it is possible to
perform the RG for rather large cell sizes. Moreover,
each cell size, the calculations that have to be performed
rather limited.

A special feature of our renormalization-group calculati
is the absence of proliferation of interactions. It is not ve
clear to us what the precise conditions are on the effec
cell states that guarantee this simplification. Certainly t
feature would disappear if we would extend our calculatio
to higher order along the lines discussed for quantum s
systems in@35#.

V. RESULTS

We applied the RG procedure described in the preced
sections to the contact process for block sizesb53,5, . . . .
For each sizeb52n21 we had to calculate the nontrivia
ground state of the nonsymmetrical 2n32n matrix Ha

r . Ana-
lytically, this was only possible forb53 and b55. For
larger block sizes, we turned to numerical diagonalizat
04110
ct

r
re

e
s
s
in

g

n

methods, in particular the Arnoldi algorithm@30#. This algo-
rithm is designed to calculate eigenvalues and eigenvec
of an extreme part of the spectrum~in our case the low-lying
part! of large nonsymmetrical matrices. When the algorith
converges, it produces very precise estimates. Since for
chastic systems we know the value of the ground-state
ergy exactly, we have a reliable criterion to decide on co
vergence and hence a very powerful diagonalization to
Using this method, we were able to perform the RG cal
lations up tob537.

For eachb value, the location of the critical pointlc and
the critical exponentn' were calculated using the method
explained in Secs. III and IV. In order to determine also t
exponent ratiob/n' , we need to calculate the quantitya(l)
at the critical point@see Eq.~20!#. This requires the calcula
tion of some extra matrix elements. Our results forlc and
the two critical exponents are given in Table I.

We have extrapolated the results of the RG calculati
using the BST algorithm@31#, which is known to be a good
tool to extrapolate finite lattice data@32#. The results are also
included in Table I.

In Table I we also compare our extrapolations with tho
that can be found in the literature and are based on a va
of other techniques. The results in the second row were
tained from a numerical diagonalization of the Hamiltoni
for the contact process on a finite lattice. In that case,
exponentb was not calculated, but we used a scaling relat
@1# to obtain this exponent from estimates ofn' and the
9-6
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exponentd. The estimates in the three last rows are not
the contact process itself, but for other models in the sa
universality class.

As can be seen, the results of our RG technique comp
very well with those of the other techniques, especially
the location of the critical point and the correlation leng
exponent. The value ofb/n' is somewhat less precise. How
ever, in comparison with the standard of real-space ren
malization calculations, the current results must be con
ered to be extremely precise.

VI. CONCLUSIONS

In this paper, we have applied a real-spa
renormalization-group technique, originally developed
quantum systems, to the contact process. Using some
lytical properties, such as the duality of the process, we h
been able to carry out the renormalization for rather la
cell sizes. Together with a suitable extrapolation, this
yielded estimates for critical properties that are of very h
accuracy.

In our previous paper@22#, we applied the technique t
simple reaction-diffusion processes that do not have a ph
transition. There we showed that in some cases our RG t
nique was able to reproduce exact results. Combining
results of the two papers, we believe that it is fair to say t
the technique is able to give accurate results for the stat
ary state of stochastic systems with one type of particle~or
stated otherwise, in which the variable at each site can b
two different states!, when only nearest-neighbor interactio
are involved. Of course, it may be so that for any particu
model some ‘‘cooking’’ is necessary in order to obtain go
results. But that is a quite general limitation of real-spa
renormalization approaches.

At this moment, there are two obvious directions in whi
to develop this RG method. First, one may consider p
cesses in which more than two particles are involved. O
can think, for example, of the processB1A1B→A1A
1A that appears in the branching and annihilating wa
with an even offspring, a model that belongs to the PC u
versity class. In that case, the Hamiltonian of the proc
contains three site interactions. As argued in our previ
paper, it is necessary to extend the current RG procedur
higher order to be able to obtain a renormalized Hamilton
with three site interactions~in @35# such a higher-order ex
tension of the standard RG method is discussed in the
text of quantum spin chains!. This higher-order extension
s
e,
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requires knowledge of all the eigenvalues and eigenvec
of the cell Hamiltonian, which severely restricts the cell siz
that can be studied, since algorithms such as the Arnold
Lanczos procedures are only able to give good estimate
low-lying eigenvectors and eigenvalues. Moreover, in s
chastic systems, eigenvalues can be complex, which in
can give rise to parameter flows that are complex. We h
tried this kind of higher-order technique in a prelimina
study of a nonequilibrium Ising model@36# whose transition
is believed to be in the PC class, and which also has a du
@37#. In that calculation, we encountered this problem
complex eigenvalues, and at this moment it is unclear to
how to proceed in this direction.

A more promising approach extends the techniques in
duced here to models with several types of particles, or w
more than two states per site. If one restricts again the in
actions to be of nearest-neighbor type, there are no fun
mental problems to apply our RG technique. Several of
interesting processes mentioned in the Introduction belon
this class of models. One may think of branching and an
hilating walks with two types of particles and exclusion, t
model originally studied by Van Wijlandet al. @38#, etc.

Another very interesting model of this latter type was r
cently introduced by Hinrichsen@9#. It is a generalization of
the contact process in which at each site there can bn
‘‘empty’’ or nonactive states. Forn51, the model coincides
with the contact process studied here. Forn52, the general-
ized contact process is believed to be in the PC universa
class, whereas forn.2 the critical behavior has not bee
determined yet@9#. Because this model is a natural extensi
of the contact process, and given the success of our
method for that model, we believe it is an example of
interesting model that could be studied successfully with
approach. Unfortunately, the model has no obvious dua
Moreover, since at each site the system can be inn11 states,
the calculations will by necessity be restricted to smalleb
values. Nevertheless, forn52 it should still be possible to
reach cell sizesb'20225. In this way, we hope it will be
possible to obtain rather accurate exponent estimates fo
PC universality class. We plan to present results of an
study of then52 Hinrichsen model in a forthcoming pape
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