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One-dimensional contact process: Duality and renormalization
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We study the one-dimensional contact process in its quantum version using a recently proposed real-space
renormalization technique for stochastic many-particle systems. Exploiting the duality and other properties of
the model, we can apply the method for cells with up to 37 sites. After suitable extrapolation, we obtain
exponent estimates that are comparable in accuracy with the best known in the literature.
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I. INTRODUCTION standing of these models has come from two approaches:
extensive numerical simulations and field theoretic
Phase transitions out of an absorbing state form an impomrenormalization-grougRG) techniqueg§12,13. Both meth-
tant class of nonequilibrium critical phenomelid. Models  ods have their strong and weak points. Simulations allow the
having such a transition have appeared in various areas sustudy of quite big system sizésspecially ind=1). Near the
as surface chemistfy2], population dynamic§3], etc. Very  critical point, however, relaxation times may be quite large
recently, it was even shown that the so-called “self-and one can never be very sure that the asymptotic time
organized criticality” appearing in a number of sandpile regime has been reached. Field theoretic techniques are very
models can be related to “ordinary” criticality in a class of powerful but have their own difficulties. In the case of the
models with an infinite number of absorbing states and @ranching and annihilating random walks with an even off-
conservation law4,5]. spring, there exist two upper critical dimensions that make
A hot topic in current nonequilibrium statistical mechan- reliable exponent estimates th=1 very difficult [10]. Be-
ics is to understand what the possible universality classes agdes these two main techniques, also a series expansion
that can exist for such models, and more importantly, whatnethod has been developed for nonequilibrium systems
precisely determines these universality classes. Research pr,15. This method gives very accurate exponent estimates
these questions has mainly focused on the one-dimensionfdr such models as the contact process, but has not been
case. By now, it is clear that two main nontrivial universality applied very extensively yet.
classes exist. The first one is that of directed percolation For these reasons, in recent years attention has been given
(DP), which contains models such as the contact process, thte alternative approaches that can be called real-space renor-
Ziff-Gulari-Barshad[2] model of catalysis, branching and malization methods. These techniques use the by now well
annihilating walks with an odd offsprind], etc. This class known formal equivalence between a stochastic system and a
is very robust, in agreement witthe DP conjecturg[7],  quantum-mechanical model evolving in imaginary tifaé].
which states that all phase transitions out of an absorbingn this way, one can associate with the generator of a Markov
state in models with a scalar order parameter, short rangehain a quantum Hamiltonian, which can then be studied
interactions, and no conservation laws belong to the DP uniusing various techniques that were originally introduced in
versality class. Over the past decade, the existence of a sefre study of quantum spin chains, fermion models, etc. For
ond universality class has been clearly established. Thisome models, this approach can lead to an exact solution. As
class, known as the parity-conservifigC) class, contains, an example, we mention the relation between the asymmetric
among others, such models as the branching and annihilatingkclusion process and th&XZ chain. Unfortunately, no
walks with an even offspring, the monomer-dimer md@  models with a nontrivial bulk phase transition can be solved
and a certain type of generalized contact prod€8sThe in this way. Yet, in the same spirit one can then use approxi-
precise conditions that determine this class are, however, stithate techniques originally developed for quantum systems to
unclear. Some authors argue that it is a conservatio1@v  study stochastic systems. The most famous of these ap-
(the conservation of particle number modulptBat is the proaches is certainly the density-matrix renormalization
important factor, whereas others have claimed that it is thgroup (DMRG) [17,18. This technique has by now been
existence of two equivalent absorbing stdt@ks adapted to stochastic systemi$9—21. The method is
Another issue that is currently being debated is the imporasymptotic in time, but at this moment can treat only systems
tance of exclusion in these models. Indeed, it has been reonsisting of approximately 50—100 sites. The name DMRG
cently argued that adding exclusion to a model of branchings a bit of a misnomer since no renormalization-group flows
and annihilating walks withN=2 species of particles are calculated. This may make it hard in some cases to get
changes some of the critical exponefi§]. clear results on issues of universality.
In light of these questions, the development of precise Another approach working within the same spirit was re-
approximate techniques is crucial. Most of the current undereently introduced by the present authg22]. In our real-
space renormalization-group technique, we apply the so-
called standard renormalization meth@RG), also known
* Aspirant Fonds voor Wetenschappelijk Onderzoek—Vlaanderenas the SLAC approach23], to the quantum Hamiltonian
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associated with the stochastic model. The SLAC approachtochastic process. This mapping of a stochastic system onto
was introduced in the late 1970s in the study of lattice gauga quantum-mechanical one is by now quite standard and we
theories and was subsequently applied to a great number @fill not discuss it here in any detail. We only give a brief
guantum spin and fermion systefi&®!]. In a previous paper, review that also fixes the notation that will be used further.
we adapted this technique to the study of stochastic system® each configuration;, a state vectofn)= ®iN: 1) is

[22] and applied it to some exactly solvable cases. Surprisassociated. The vectofs;) form the basis vectors of a two-
ingly, in many cases exact results were recovered. We alsgimensional vector space. It is then natural to use a $pin-
applied our technique to the contact process, using a smalnguage to describe this vector space. As usual, a particle
cell of only three sites. The numerical estimates of critical(vacancy will be associated with spin dowfup) [26].
properties that we obtained for this process were within 10% Next, we also associate a vectd(t)) with the condi-

of the best known values. In the present paper, we extend odional probabilitiesP( 7,t; 7,,0) such that

calculations for the contact process to as large cells as pos-

sible. Using underlying properties of the contact process, we

are able to get results for cells with up to 37 sites. To the best [P(D)= 277 P(7,t;70,0)| 7). @

of our knowledge, this is a “world record” for the SRG

approach to quantum systems. Combined with good extrapajsing this notation, the master equatid is rewritten as
lation techniques, these results allow us to determine very

accurate exponents for the contact process. In fact, the results d|P(t))

we obtain are of the same accuracy as those obtained from a HIP(1)). ()
series expansions and simulations, and are more accurate

than those coming from the DMRG. From now on, we will refer to the matrikl as the Hamil-

~ This paper is organized as follows. In the next section, weonian of the stochastic system. For processes with transition
introduce the contact process and its quantum descriptionates that involve only nearest-neighbor sitesch as is the
We also translate the duality of the model into a quantumcase for the contact processl can be written as a sum of

mechanical language. In Sec. Ill, we give a brief outline ofjpcal Hamiltoniansh; ;. ; that act only on nearest-neighbor
our real-space renormalization method. In Sec. IV, we showites,

how for the case of the contact process, the RG flow can be

calculated from a knowledge of only two matrix elements. In

Sec. V, we present the results of our calculations for different H= 2. 1,® - ©118h;j 118101y (4)
system sizes, describe the extrapolation procedures, and

compare our results with those in the literature. Fina”y, We€ln the particu|ar case of the contact process, we r(aee
conclude with a discussion in Sec. VI. also[25])

Il. QUANTUM DESCRIPTION OF THE hiivi=(Ni—s)®1i44
CONTACT PROCESS

A _ _
The contact process was originally introduced as a simple +5li=s)@NLFN@ Wi —S )] O

model for the spreading of an epidenjig]. On each site

i(i:1,...N) of a lattice A, there is a variabley; that can  where the matrices, n, s*, ands™ are given by
take on two values, referred to &sand . In the contact

process, particled\ (vacanciesd) are interpreted as sick 10 00 . (01
(healthy individuals. The dynamics of the model is given by "o o ™o 1) S Tlo o)

a continuous-time Markov chain on the set of all microscopic

configurationsn={74, ...,yy}. The following processes 0 0
are allowed: a sick person can be curéd-<J) with rate 1 s‘=(

and a healthy individual can become contaminated with a 10
ratezA/2, wherez is the number of sick neighbors. The con-
ditional probability P(7,t; 70,0) that the system is in con-
figuration » at timet given that it was inz, at timet=0 IP(1))=e " H|P(0)).
then obeys the master equation

. (6)

The formal solution of the master equati@) is

] Because of the properties of stochastic matrices, there is al-
dP(7,t; 70,0 _ _2 H(7,7")P(7' t: 76,0) (1) Wwaysazero eigenvalue and the real parts of the other eigen-
dt 7 ’ e values ofH are never negative. Therefore, asymptotically,
for t—o the behavior of P(t)) is determined by the prop-
where the 22N matrix H, the generator of the Markov erties of the ground sta® of the quantum Hamiltonian. In
chain, depends on the transition rates, i.e.\on our RG approach, we study the critical behavior of the sta-
The master equatiofi) is formally equivalent to a Schro tionary state of the stochastic system by applying a real-
dinger equation in imaginary time. It has therefore becomespace renormalization technique originally developed to
common to introduce a quantum-mechanical notation for atudy ground-state properties of quantum systems.

7
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Expectation values of physical quantities can also easily <nk>(t):<0|(vk_s+)e—HTt|o>
be rewritten in terms of the quantum notation. With each k
ph_ysical quqntity]—“ (such as the density pf particles, corre- =(0le""(v—s¢)|0)
lation functions, etg, we can associate a quantum- e
mechanical operatoF [with matrix elements(7|F|7') =1—-(0le” "k). 9

=F(n)¥d,, ] such that the expectation value 5f
Here |k) is the state with only one particle, at site The

matrix element(0le” k) appearing in Eq(9) gives the
(F(t)=2 Fp)P(n.t;70,0), probability that starting at=0 with one particle at sit& no
7 particles are left in the system at tinhelf we introduce the
survival probability R(t) as the probability that if the sys-
tem is initially in the statdk) there are still particles in the

(P t)=(s|F|P(t))=(s|Fe""|P(0)), system at time, we finally get

can be rewritten as

where we have introduced the shorthand notation (N (1) =Py (1). (10

This is the duality relation of the contact process. It says that
<5|:2 (nl. () the density of particles at site when starting from a com-
7 pletely full lattice is the same aB,(t). Fort—o, one ex-
pects that the steady-state value of the density becomes in-

The contact process has a property known as dugiy dependent of the initial condition and hence we obtain

This notion was first introduced in the probabilistic study of
interacting particle systems and should not be confused with

the concept of duality from equilibrium statistical mechanics. (Ni)s= P st- (11)
Before proceeding with the renormalization-group study of

the contact process, we show how this duality can be derivetiere, the subscript “st” denotes the stationary-state value.
in the quantum-mechanical language. This formulation of (In the rest of this paper, we will drop the direct product
duality was first given if28]. We will describe it here in a Symbol to shorten the notation. We will also drop all unity
slightly different way, which will be appropriate for the use operators, as their presence is always implicitly assumed.
we want to make of it in our renormalization calculations

(see Sec. Iy, _ . ll. STANDARD RENORMALIZATION FOR
We begin by introducing the:22 matrix d, STOCHASTIC SYSTEMS
1 1 We briefly review the use of the standard real-space RG
d= ( 1 0) , for stochastic systems as introduced in a previous pa2tr
For more details, we refer to that work.

As usual in real-space RG approaches, the lattice is di-
vided into cells, each containinly sites. In the case of a
one-dimensional system, we can regroup the terms in the
HamiltonianH (4) to write

anddy=1,®1,---®d®---®1y, Yk (with d on the kth
site). It is then easy to check the fundamental property

he= (dy@dys 1) i(de@ i)
where T stands for transposed. Furthermore, one has H=>, (Hout Vg at1): (12

dknkdglzuk—s,f. From these relations and definify=
®dy, one can obtain a useful expression for the expectation

value ofny that gives the density of particles at ske Here « labels the cellsHg , contains the intracell terms of
H, andV, ,.; denotes the intercell interactions. Nekig ,
(n)(t)=(s|ne " P(0)) is diagonalized exactly. For simplicity, we now only con-

sider the case where the ground stateHgf, is doubly de-
=(s|D"'Dn,D " 'De” "D 'D|P(0)). (8  generated. We then have two right and two left ground states
of Hy, denoted ags;),, |S2), and ,(si|, «(s,l, Which we
If 10) and [L) denote, respectively, the completely empty can normalize as,(si|s;),= ;. We consider one of these

and completely full configuration, one has states as representing a “cell vacancy” stif), and the
other as a “cell particle”|A),, state. These states are used to
(D" HTs)=0), construct renormalized lattice configuration$y’) =
® 4| 7)., Which span a ¥'®-dimensional subspade of the
D[L)=|0). original state space.

The renormalization transformation is now performed by
Therefore, if we take as the initial conditidiP(0))=|L), projecting the original Hamiltonian ontd/. This is done by
Eq. (8) becomes means of the matrices
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) ) In principle, other expectation values can be calculated in a
T1=2 le, ) {(7'l, Tzzz |7")(e,l, (13  similar way.
7 K To conclude this section, we show how Ed7) can be

wherele,) are the vectors of the standard basis/uf Be- used to calculate the exponefit Nearw®, we get for the

cause of our choice of normalization for the ground statesSingular part ofcg;,
we getT,T,=1, the identity operator oW . Finally, T, and

T, are used to calculate the renormalized Hamiltortnas Co(Awy) =a(W*)cg(bYmAw,). (19
H'=T{HT,. (14 we write
When the ground state of the intracell pakts, is doubly a(W*)=bA": (20)

degeneratedas we assumedit is easy to show that’ is
again stochastic.

If we collect the rates appearing H in a vectorw, Eq.
(14 defllnes a mapping in the parameter spadt_—:cf(w)._. Co(AW) ~(Awy)?, (21)
From this mapping we can determine fixed points, critical
exponents, expectation values in the ground state,(®twe
of the rates appearing in the Hamiltonian can always b .
taken equal to 1. This is merely a fixing of the time scale.a(W").
The corresponding rate in the renormalized Hamiltonian is

not necessarily 1, but we then divit by this renormalized  |v. RENORMALIZATION OF THE CONTACT PROCESS
rate; the effect of this division is included in the mappig

To fix ideas, let us assume that the equatians: f(w)
have a nontrivial fixed point at*, with one relevant scaling
field (which in a linear approximation is proportional to ter
Aw,=w;—w]) whose scaling dimension 'ys,vl. From stan-
dard RG theory, it then follows that near criticality the cor-
relation length¢ will diverge asé~|Aw,|"t with hi=n,—s* 22)

and get from Eqgs(19) and(15)

é/vhich justifies EQ.(20). Hence, 8 can be obtained from

This section is a more technical one, and shows explicitly
how we calculate the RG flow for the contact process.
We start by dividing the lattice in blocks of length The
ms of the Hamiltonian4) and (5) are regrouped. We
therefore introduce the following short-hand notations:

v, = 1/ywl- (15 N

. h'=3[wi=s)na+nia—si)l (29
In order to determine the order-parameter expoyknte

need first to explain how the particle density in the stationary

statecy(w) can be calculated within our RG scheme. WhenWhich are, respectively, the generators of the processes
the system is in the ground std&), and assuming transla- —< andA+J—A+A,J+A—A+A. Notice that each of

tional invariance, this density is given by these terms itself has the property of duality.
It is now important to remark that the regrouping in intra-
- > cell and intercell parts of the Hamiltonian is not unique. A
ColW) = (s|nlsi(w)), (16) ¢ .

natural attempt is to take intd, , all the terms that act on
*he sites inside the cell, hence take the intracell Hamiltonian

where we have now explicitly indicated the dependence o .
. - as that of a contact process for a systenb sftes with open
the ground state on the transition ratesUnder the renor- boundary condition:Ho,=3P_;h% .+ 3P *h2 . (here the
b e | a,l I a,l

malization, this expectation value transformg 23]

first subindex labels the cell, while the second indicates the
R . . site in the given cell This choice, however, is not suitable
Csf(W) =a(w)CsfW'). (17 for us since in this case the intracell Hamiltonian has only
' one ground state, which is the trivial empty lattisg),=
Here we assumed, as will turn out to be the case for the,b |y ..
contact process, that the renormalized particle opengfor As we argued in the preceding sectidty, should have
=T,nT, is proportional ton,, i.e.,n,=a(w)n,. The rela- two ground states, one representing the effective vacancy of
tion (17) can be iterated along the RG flow, and hence thecell @ and one representing the effective particle. It is the
density of particles can be obtained as an infinite product isecond one that is missing. To solve this problem, we
one knows the density at thrivial) fixed pointw; that “force” Hy, to have an active ground state by removirjg
~ on the central site of the cell. This resembles the so-called
attractsw, o . -
self-dual renormalization group introduced earlier in the
study of quantum models such as the Ising model in a trans-
CSI(\K/;)- (18  Verse field[29].

CSI(V-\)/) =
From now on, we choosk odd,b=2n—1, and take

[IO a(vT/(‘))
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n-1 b b-1 1 T T T T T T
Hoo=2, hii+ 2 hhi+ 2> b @9 , KN
i=1 7 iZn+1 0 =12 7 e S\ j
08 ~ X B
The operatorh, , that we removed fronH,,, is then of F L
course added t&/, ,+; concluding the regrouping of the 06 [ X ]
terms occurring in the Hamiltonian. i AN ]
The hardest part of the RG is the calculation of the two A ]
right and left ground states &f, , for b as large as possible. Tt NI
Analytically this can only be done fds up to five sites. To i AR ]
make a reliable extrapolation fér—o possible, we need a 02 Tl el ]
good numerical algorithm to get to largler Before we turn . Tt el ~~e_ ________ 4
to this point in the next section, there are a few analytical ¢ L I ! . I aliatiatls
considerations that can be made and that will turn out to be 1 2 3 4 5 6 7 . 8
extremely useful in studying large cell sizes.
We start with the two right ground statés ), , |s,), of FIG. 1. Average density of particleln;) in the state|A), ,

Ho. as defined in Eq(24). The first one is again trivial ®|y),, for n=8, at different values ok. The curves arétop to
IS1)a=®_1|D).i - To get an idea of how the active ground Pottom ath=4,3.298¢) andx=2.

state|s,), looks, we rewrite Eq(24) as _ _
Hy, on a lattice ofn sites, we can construct the ground state

Hoo=H},+HY, (25 of the process defined by, on a lattice ob=2n—1 sites
(since| ), can easily be obtained by reflection orgg', is

where known). In conclusion, we have
n-1 n—-1
H;:E hi,i—’_z hi,i’ |Sl>a:®ib:l|@>a,i!
i=1 i=1 ; | (28)
b b—1 (26) |32>a:|w>a®|A>a,n®|lp>a'
I _ 1 2
H“_i:;u ha,i+;n hi- For the left ground states df,,, we always have the

trivial ground state,(s|=2,(y| and a nontrivial one. To
PhysicallyH', (H') is the stochastic generator of the contactfind the latter, we exploit the duality dfl,,. Indeed, from
process on a lattice of sites without the process— on  this duality Hj ,=BH,,B~?, it follows that for any right
the right(left) site. These operators have again a trivial rightground states,), of Ho,,, (B|sy),)" is a left ground state.
ground statéthe empty lattickand a nontrivialactive right ~ Denoting [;'(¢| =(B| zp)[;')T, we have
ground state. To get a better grasp on the latter one, we first

notice thatH', has no A— ) term on site &,n). Since this 51 =1 Bl (D@ ],
is the only reaction destroying’s on that site, there are no (29
transitions possible from configurations with @non site o S2 = (S| — u(s1l-

(a,n) to configurations with no particle at(n). Denote the . .

subspace spanned by the former configurationa’byhen, We takeF,(szl of this form because of normah;anon reasons.
H!, defines a stochastic processWrimplying thatH', must Our choice guarantees thg(si|si>“.: 4, Which we need
have a ground state in this subspace. This ground staﬁg conserve stochasticity as explained in the preceding sec-
clearly cannot be the empty lattice since this is not an eIe-'Or_]I_' lude th lculati ; th i
ment of V. We therefore conclude that this state is the active, | © ¢ONclude Ine caicuiation, we perform the renormaliza-
ground state oH’. and that it has with probabifit1 a par- t!on transfcrarlmatlor(14) on H. Without any further informa-
ticle A at siten. The same can be said fét',. As a conse- tion on|y),;", we know that the ground staté28) and (29)

uence. we can write the active around state as of Hy, are properly normalized and have left-right symme-
q ' 9 try, and moreover we know the state of the central site. Us-

[)o®|A) o  for HY, ing these three properties, it is straightforward to show that
@27) the renormalized Hamiltoniad’ contains the same terms as
|A>a,n®|¢>|a for H'a, H, there is therefore no proliferation of interactions, and that

the RG equation for the rate is of the form
where| )", and|)', are states on a lattice with—1 sites
(to get some idea of the stdi),, ,®| ), , we show in Fig. NN (30
1 the behavior of the particle density in this state for a sys- w2’
tem of eight sites
It then follows from Eq.(26) that |#)"®|A), ,®|#), is  where
the active ground state di,,. Hence, if we can find the
right ground state of the “contact process” determined by v=(s[n,1([¥)e®[A) o),

041109-5
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TABLE I. Critical parameters as calculated by the RG method for a blodk sifes, together with the
results coming from other approaches.

b ¢ v, Blv,
9 3.228740192229 1.100222670443 0.300770659640
11 3.232841532095 1.099704726572 0.291239313449
13 3.236622341324 1.099306840428 0.284829626291
15 3.240001893307 1.098993499409 0.280220582724
17 3.243002363779 1.098741258486 0.276745857289
19 3.245669884031 1.098534370274 0.274032449042
21 3.248051604747 1.098361971472 0.271855062319
23 3.250189366461 1.098216363626 0.270069478446
25 3.252118590397 1.098091954504 0.268579043181
27 3.253868772889 1.097984591005 0.267316523888
29 3.255464377754 1.097891127814 0.266233690895
31 3.256925727824 1.097809141091 0.265295037853
33 3.258269778268 1.097736734033 0.264473840447
35 3.259510752614 1.097672401665 0.263749596182
37 3.260660654464 1.097614935125 0.263106311367
b— o0 3.29822) 1.096822) 0.25344)
series expansiofil5,14] 3.2978%2) 1.09691) 0.252@1)
diagonalizatior[34] 3.297922) 1.096811) 0.2541)
simulations[33] 1.096841) 0.252081)
series expansions89] 1.0968544) 0.25207211)
DMRG [20] 1.082) 0.2493)

W= ("{}|® 0. n{D|)sn (| )| A) g.n) methods, in particular the Arnoldi algorithf80]. This algo-
: : rithm is designed to calculate eigenvalues and eigenvectors
=Bl (3D of an extreme part of the spectruim our case the low-lying
o T AT parh of large nonsymmetrical matrices. When the algorithm
- a< ‘M B | (p)a ' i i i i _
converges, it produces very precise estimates. Since for sto

This means we can aenerate the RG man for the contacthaStiC systems we know the value of the ground-state en-
. g P : %rgy exactly, we have a reliable criterion to decide on con-
process with cell lengtbh=2n—1 by calculating two matrix

. . vergence and hence a very powerful diagonalization tool.
elements. in the right grpund state_z of the ‘FOT“aCt prpeécgs Using this method, we were able to perform the RG calcu-
on a lattice of onlyn sites. In this way, it is possible to lations up tob=37
perform the RG for rather large cell sizes. Moreover, for P ' . - .
each cell size, the calculations that have to be performed arﬁ For. gacrb value, the location of the Cm'f:al poini; and
rather limited. the critical exponenw, were calculated using the methods

A special feature of our renormalization-group calculation€Xplained in _Secs. [l and IV. In order to determme_ also the
is the absence of proliferation of interactions. It is not veryexponent ratigs/», , we need to calculate the quantay)
clear to us what the precise conditions are on the effectivat the critical poin{see Eq.(20)]. This requires the calcula-
cell states that guarantee this simplification. Certainly thigion of some extra matrix elements. Our results Xgrand
feature would disappear if we would extend our calculationghe two critical exponents are given in Table I.
to higher order along the lines discussed for quantum spin We have extrapolated the results of the RG calculations
systems in35]. using the BST algorithnp31], which is known to be a good
tool to extrapolate finite lattice daf82]. The results are also
included in Table I.

In Table | we also compare our extrapolations with those

We applied the RG procedure described in the precedinghat can be found in the literature and are based on a variety
sections to the contact process for block sibes3,5,....  of other techniques. The results in the second row were ob-
For each sizéo=2n—1 we had to calculate the nontrivial tained from a numerical diagonalization of the Hamiltonian
ground state of the nonsymmetricdl22" matrix H!,. Ana-  for the contact process on a finite lattice. In that case, the
lytically, this was only possible fob=3 and b=5. For  exponeniB was not calculated, but we used a scaling relation
larger block sizes, we turned to numerical diagonalizatior{1] to obtain this exponent from estimates of and the

V. RESULTS
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exponents. The estimates in the three last rows are not forrequires knowledge of all the eigenvalues and eigenvectors
the contact process itself, but for other models in the samef the cell Hamiltonian, which severely restricts the cell sizes
universality class. that can be studied, since algorithms such as the Arnoldi or
As can be seen, the results of our RG technique compareanczos procedures are only able to give good estimates of
very well with those of the other techniques, especially forlow-lying eigenvectors and eigenvalues. Moreover, in sto-
the location of the critical point and the correlation lengthchastic systems, eigenvalues can be complex, which in turn
exponent. The value @8/v, is somewhat less precise. How- can give rise to parameter flows that are complex. We have
ever, in comparison with the standard of real-space renottried this kind of higher-order technique in a preliminary
malization calculations, the current results must be considstudy of a nonequilibrium Ising modgB6] whose transition

ered to be extremely precise. is believed to be in the PC class, and which also has a duality
[37]. In that calculation, we encountered this problem of
VI. CONCLUSIONS complex eigenvalues, and at this moment it is unclear to us

) ) how to proceed in this direction.

In this paper, we have applied a real-space A more promising approach extends the techniques intro-
renormalization-group technique, originally developed forquced here to models with several types of particles, or with
quantum systems, to the contact process. Using some angpre than two states per site. If one restricts again the inter-
lytical properties, such as the duality of the process, we havgctions to be of nearest-neighbor type, there are no funda-
been _abIe to carry out the ren_ormalization for. rather. largqnental problems to apply our RG technique. Several of the
cell sizes. Together with a suitable extrapolation, this hasnteresting processes mentioned in the Introduction belong to
yielded estimates for critical properties that are of very highthjs class of models. One may think of branching and anni-
accuracy. hilating walks with two types of particles and exclusion, the

In our previous papef22], we applied the technique to model originally studied by Van Wijlanét al. [38], etc.
simple reaction-diffusion processes that do not have a phase another very interesting model of this latter type was re-
transition. There we showed that in some cases our RG tect&enﬂy introduced by Hinrichsef®]. It is a generalization of
nique was able to reproduce exact results. Combining théhe contact process in which at each site there cam be
results of the two papers, we believe that it is fair to say that‘emptyn or nonactive states. Fan=1, the model coincides
the technique is able_ to give accurate results for the stationyith the contact process studied here. Rer2, the general-
ary state of stochastic systems with one type of parfiete  jzeq contact process is believed to be in the PC universality
stated otherwise, in which the variable at each site can be igass whereas fon>2 the critical behavior has not been
two different statels when only nearest-neighbor interactions getermined yelf9]. Because this model is a natural extension
are involved. Of course, it may be so that for any particulargf the contact process, and given the success of our RG
model some “cooking” is necessary in order to obtain goodmethod for that model, we believe it is an example of an
results. But that is a quite general limitation of real-spacnteresting model that could be studied successfully with our
renormalization approaches. . o _approach. Unfortunately, the model has no obvious duality.

At this moment, there are two obvious directions in which Moreover, since at each site the system can betirl states,
to develop this RG method. First, one may consider proyne calculations will by necessity be restricted to smatler
cesses in which more than two particles are involved. Onggjyes. Nevertheless, far=2 it should still be possible to
can think, for example, of the procesS+A+J—A+A  reach cell sizeb~20—25. In this way, we hope it will be
+A that appears in the branching and annihilating walksyossiple to obtain rather accurate exponent estimates for the
with an even offspring, a model that belongs to the PC unipc yniversality class. We plan to present results of an RG

versity class. In that case, the Hamiltonian of the procesgy,qy of then=2 Hinrichsen model in a forthcoming paper.
contains three site interactions. As argued in our previous

paper, it is necessary to extend the current RG procedure to

h|gher order_ to _be able_to (_)btaln a renorma_llzed Hamiltonian ACKNOWLEDGMENT

with three site interactionén [35] such a higher-order ex-

tension of the standard RG method is discussed in the con- We thank the Inter University Attraction Poles for finan-
text of quantum spin chainsThis higher-order extension cial support.
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